Effect of Temperature-Shift and Temperature-Constant Cultivation on the Monacolin K Biosynthetic Gene Cluster Expression in Monascus sp.

نویسندگان

  • Lin Lin
  • Changlu Wang
  • Zhenjing Li
  • Huijia Wu
  • Mianhua Chen
چکیده

In this study, the effects of temperature-shift (from 30 to 25 °C) and temperature-constant (at 30 °C) cultivation on the mass of Monascus fuliginosus CG-6 mycelia and concentration of the produced monacolin K (MK) were monitored. The expression levels of the MK biosynthetic genes of M. fuliginosus CG-6 at constant and variable culture temperatures were analysed by real-time quantitative polymerase chain reaction (RT-qPCR). The total protein was collected and determined by liquid chromatography-electrospray ionisation with tandem mass spectrometry (LC-ESI-MS/MS). Results showed that the maximum mycelial mass in temperature-shift cultivation was only 0.477 g of dry cell mass per dish, which was lower than that in temperature-constant cultivation (0.581 g of dry cell mass per dish); however, the maximum concentration of MK in temperature-shift cultivation (34.5 µg/mL) was 16 times higher than that in temperature-constant cultivation at 30 °C (2.11 µg/mL). Gene expression analysis showed that the expression of the MK biosynthetic gene cluster at culture temperature of 25 °C was higher than that at 30 °C, which was similar to the trend of the MK concentration, except for individual MK B and MK C genes. Analysis of differential protein expression revealed that 2016 proteins were detected by LC-ESI-MS/MS. The expression level of efflux pump protein coded by the MK I gene exhibited the same upregulated trend as the expression of MK I in temperature-shift cultivation. Temperature-shift cultivation enhanced the expression of proteins in the secondary metabolite production pathway, but suppressed the expression of proteins involved in the mycelial growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning and Characterization of Monacolin K Biosynthetic Gene Cluster from <italic>Monascus pilosus</italic>

Monacolin K is a secondary metabolite synthesized by polyketide synthases (PKS) from Monascus, and it has the same structure as lovastatin, which is mainly produced by Aspergillus terreus. In the present study, a bacterial artificial chromosome (BAC) clone, mps01, was screened from the BAC library constructed from Monascus pilosus BCRC38072 genomic DNA. The putative monacolin K biosynthetic gen...

متن کامل

Identification of the mokH gene encoding transcription factor for the upregulation of monacolin K biosynthesis in Monascus pilosus.

Monacolin K is a secondary metabolite synthesized by polyketide synthases (PKS) from Monascus. The monacolin K biosynthetic gene cluster, mokA-mokI, has been characterized in Monascus pilosus. The mokH gene encoding Zn(II)2Cys6 binuclear DNA binding protein is assumed to be an activator for monacolin K production. In this study, the mokH gene was cloned and driven by the glyceraldehyde-3-phosph...

متن کامل

Development of monacolin K-enriched ganghwayakssuk (Artemisia princeps Pamp.) by fermentation with Monascus pilosus.

Monacolin K-enriched ganghwayakssuk (Artemisia princeps Pamp.) was developed by fermentation with Monascus sp. Among the 15 Monascus spp. isolated previously from Monascus fermentation products, Monascus pilosus KMU108 produced 2,219 mg/kg of monacolin K during ganghwayakssuk fermentation with no detectable citrinin. The optimum concentrations of ganghwayakssuk and glucose determined from the r...

متن کامل

Elevated yield of monacolin K in Monascus purpureus by fungal elicitor and mutagenesis of UV and LiCl.

In China, Monascus spp., a traditional fungus used in fermentation, is used as a natural food additive. Monascus spp. can produce a secondary metabolite, monacolin K namely, which is proven to be a cholesterol-lowering and hypotensive agent. Hence, recently, many researchers have begun focusing on how to increase the production of monacolin K by Monascus purpureus. In the present study, we inve...

متن کامل

De Novo RNA Sequencing and Transcriptome Analysis of Monascus purpureus and Analysis of Key Genes Involved in Monacolin K Biosynthesis

Monascus purpureus is an important medicinal and edible microbial resource. To facilitate biological, biochemical, and molecular research on medicinal components of M. purpureus, we investigated the M. purpureus transcriptome by RNA sequencing (RNA-seq). An RNA-seq library was created using RNA extracted from a mixed sample of M. purpureus expressing different levels of monacolin K output. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Food technology and biotechnology

دوره 55 1  شماره 

صفحات  -

تاریخ انتشار 2017